Figura geometrica in cui un motivo identico si ripete su scala continuamente ridotta. Questo significa che ingrandendo la figura si otterranno forme ricorrenti e ad ogni ingrandimento essa rivelerà nuovi dettagli. Contrariamente a qualsiasi altra figura geometrica un frattale invece di perdere dettaglio quando è ingrandito, si arricchisce di nuovi particolari. Il termine frattale fu coniato da Mandelbrot e ha origine nel termine latino fractus, poichè la dimensione di un frattale non è intera.
Dalla fine del XIX secolo la scienza si è orientata verso lo studio di sistemi complessi: basti pensare allo sviluppo eccezionale che ha avuto la teoria quantomeccanica o quella della relatività. Queste due teorie sono indice di come la ricerca, anche grazie a metodi matematici potentissimi e a livelli di astrazione mai raggiunti fino al XX secolo, non sia più legata all'immediata comprensibilità da parte dell'Uomo.
L'ultima frontiera della fisica, sta cercando di provare che materia, energia, spazio e tempo sono generati da vibrazioni delle supercorde, cioè oggetti indivisibili a 10 dimensioni.
Nonostante i grandiosi progressi fatti, oggi, scoprire le leggi fondamentali e comprendere "in principio" la struttura del mondo, non è più sufficiente. Sempre più importante diventa investigare le molteplici forme attraverso le quali si manifestano tali principi, le leggi devono diventare sempre più accurate nella descrizione di ogni tipo di fenomeno.
Newton ha creato un Universo parallelo a quello reale, un universo nel quale un corpo con una certa velocità iniziale, sul quale non agiscano forze, la mantiene fino alla fine del tempo (anche esso infinito). Ma non corrisponde alla realtà! Ogni corpo cambierà velocità e il tempo stesso ha avuto un inizio (e forse avrà anche una fine, se la materia dell'Universo dovesse superare un limite critico). In questo universo reale sono presenti infiniti elementi "perturbatori", il che lo rende fondamentalmente diverso dall'universo newtoniano.
Questa tendenza alla complessità, può essere bene esemplificata appunto dai frattali, figure geometriche complesse e caotiche determinate per approssimazione di una funzione ricorsiva: noi non potremo mai sapere come sia la figura finale che ha le proprietà di una frattale, ma dovremo sempre limitarci ad un'approssimazione, che può essere indicativa ma non è il frattale. È la stesso problema che si verifica nei sistemi cosiddetti "non lineari": non è possibile determinare la situazione finale date solo le condizioni di partenza, ma bisogna continuamente aggiungere dati "sperimentali". Queste problematiche hanno dato l'avvio allo studio del "caos deterministico", cioè di situazioni di disordine ottenute però da processi matematico-fisici deterministici. Gli studi a proposito sono ancora in grande sviluppo e i frattali si inseriscono prepotentemente in questa nuova branca della matematica. Noi non possiamo sapere come sarà la configurazione finale del sistema a infinite iterazioni, ma sapremmo benissimo come calcolarla; è una situazione simile a quella del fisico classico che conosce perfettamente come si muove un corpo, anche considerando attriti, campi elettromagnetici dell'ambiente e del corpo stesso e tutti gli altri possibili elementi perturbatori, ma non sa il vero valore di p. Probabilmente i suoi calcoli saranno accurati a sufficienza per ogni tipo di applicazione pratica possibile e immaginabile, ma non potrebbe prevedere deterministicamente la situazione del sistema dopo un tempo infinito.
Tuttavia con lo sviluppo continuo ed esponenziale della capacità di calcolo, si possono creare figure che hanno la stessa valenza matematica per la rappresentazione del frattale vero e proprio (quello che ha, cioè, significato matematico e che gode di alcune proprietà) della valenza di un segno su un foglio per la rappresentazione della retta. Il computer si sostituisce quindi alla matita, non alla mente del matematico, che è l'unico mezzo in grado di fare della matematica. Infatti i frattali erano già stati studiati per le loro proprietà topologiche da Julia negli anni '20, ma non erano mai stati visualizzati graficamente, né si sapeva come potesse essere la forma dei "bacini di attrazione" di una funzione che veniva continuamente iterata con se stessa. Tutto quello che è mancato a Julia è stata la capacità di calcolo che ha invece avuto B. B. Mandelbrot negli anni '80 al centro "T. J. Watson" dell'IBM. E certamente questo, cioè riuscire a visualizzare questi strani oggetti matematici e associarli a forme presenti in Natura, ha determinato il successo di Mandelbrot; questa associazione sembra quasi svelare un progetto segreto che un'entità superiore abbia realizzato per via matematica creando la Natura. Per questo negli anni '80 si è cercato di trovare in tutto un frattale. Si è sviluppata quindi una branca della geometria frattale che studia i cosiddetti frattali biomorfi, cioè simili ad oggetti presenti in natura. I risultati a volte sono stati stupefacenti, infatti uno dei frattali biomorfi più riusciti è la foglia di felce i cui dettagli, detti autosimili, riproducono sempre la stessa figura. Tuttavia, per esempio, in un albero, la foglia è strutturalmente diversa dal tronco e dai rami quindi i frattali possono essere usati come analogie.
Non viviamo più nell' universo liscio di Newton, ma nell'Universo delle iperconnessioni, della pluridimensionalità e della relatività, che lo rendono piegato e rugoso come un straccio. Forse non è facile accettare una situazione come questa dopo tre secoli nei quali l'universo ci è parso liscio e sicuro, illuminato dalla rassicurante presenza di Isaac Newton.I frattali sono figure geometriche caratterizzate dal ripetersi sino all’infinito di uno stesso motivo su scala sempre più ridotta. Questa è la “definizione” più intuitiva che si possa dare di figure che in natura si presentano con una frequenza impressionante, ma che non hanno ancora una definizione matematica precisa.
Iscriviti a:
Commenti sul post (Atom)
Nessun commento:
Posta un commento